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ON STABILITY OF MECHANICAL SYSTEMS UNDER 
THE ACTION OF POSITION FORCES * 

V. N. TKHAI 

The stability problem is solved for the equilibrium position of a holonomic mech- 

anical system subject to stationary geometric constraints and to potential and non- 

conservative position forces /l/. It is assumed that the characteristic equation of 
the linear approximation has pure imaginary roots among which there are none equal. 

The system being examined is invertible andisBirkhoff_stable/3/whenthe system does 

not have an internal resonance in the sense of /2/: finite-order instability can be 

detected only under internal resonance. Necessary and sufficient stability condi- 

tions for a model system and sufficient Liapunov-instability conditions have been 

formulated for odd-ordered resonances. A fourth-order resonance, of greatest im- 

portance among even-ordered resonances for applications, has been investigated and 
for it necessary and sufficient stability conditions in the first nonlinear approx- 

imation have been obtained in the absence of degeneracy; it is shown that Liapunov- 

instability follows from third-order instability. An example is presented. 

1, Statement of the problem, We consider a holonomic mechanical system with n 

degrees of freedom, subject to stationary geometric constraints. If as the basic variables 
characterizing the system's state at any instant t we take the independent Lagrange variables 

Ps and velocities qs' = dq, / dt, then the system's equations of motion can be written as the 

Lagrange equations 
,, 

Here T is the kinematic energy, while the generalized forces QS depend only on coordinates 

q; Qs and a,j are holomorphic functions of q. As is well known /l/, any force Q(q)= (Ql, 
.., Q,,), continuous together with its first-order derivatives and depending only on the system's 

position, can be decomposed into potential and nonconservative position components. We 
assume henceforth that the nonconservative position component of force Q is nonzero. We 

investigate the stability of the equilibrium position of system (1.1) assuming, without loss 

of generality, that zero coordinate values qsO = 0 and Qs (0) = 0 (S -= 1, . . IE) correspond to 

the equilibrium position. 

Having solved system (1.1) relative to the highest derivatives, we write it in the form 

where I:, and Csij are holomorphic functions of ql,..., q,, and the expansions of functions F, 

start with terms of no lower than second order in q; /J,~ are constants. The system's character- 

istic equation 
A (x') = drt I/ b,, ~~ ?isrx2 11 = 0 

(1.3) 
has only even powers of x, consequently, if among the roots xZ=h12,...,lin2 of (1.3) there is 

at least one complex or positive root, then the equilibrium position is unstable /l/. This is 

possible, for instance, in the absence of potential forces if the nonconservative position 

forces do not equal zero in the linear approximation /l/. Let us assume that hs2 <O(S= I,.. 
., n). System (1.2) goes into itself under the linear substitution R:t+-t, 9 -+ QY q’ + - q’, 
i.e., is invertible (possesses a linear automorphism /4/J. Therefore, if in the system there 

is no internal resonance in the sense of /2/, then the equilibrium position is a point of 
complete Birkhoff-stability /3,5/. 

By examining the linear-approximation system 

q."= i&&i (s = 1, .,n) 
(1.4) 

we pass to the complex-conjugate variables z, and 5, (s=l,..., n) by the linear substitution 

2s = il PIj (4,’ f hqj), 
,=I 

z* = ,gl Psj (- Nj' + blj) 
(1.5) 

We define the pure imaginary constants psj such that system (1.4) has the form 

a,s' = h,z,, Z,' = -F&z, (s = 1, . .( n) (1.6) 

in the new variables. Hence, substituting (1.5) into (1.6) and taking into account that ps 
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satisfy (1.4), we obtain the system of equations 

(41 - %‘)P,I + bnpsz + . . + b,,p,, = 0 
blzpal + (h - hYp,z + . . + b,,p,, = 0 

. . . . . . . . . . . . . . 
b;,;,; i i,iz + . . -I (b,, - h,Z) pnn = 0 (s = I, . . ., n) 
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(1.7) 

for computing the constants psi (s, j =I, . . ..n). Since h,2 are the roots of characteristic Eq. 

(1.3), the determinant of system (1.7) equals zero and the latter admits of a nontrivial solu- 

tion. Obviously, if among the As2 there are none equal to one another, we have det//PrjII # 0, 

whence immediately follows the nonsingularity of transformation (1.5): the determinant of the 

matrix of this transformation is 

Let us express qr and qs' in terms of the new variables z, and z,. From (1.6) we have 

zs - 2, = 2 ,$, E’slQi’v z,+zs==2h,&J,,qi (s=l,...,n) 
1=1 

whence (the dsj are pure imaginary constants) 

1 ‘;4, q* = T z 2-g (Zi + Z;), qs- = +&qz, - 5,) (s = 1, . . ,n) 
J=1 ?=l 

Now we write the result of passing to the new variables as 

z’ = AZ + z (2, Z), Z' = - ni + z (z, Z) 

z== (z,, . ., z,,) z --: (81, ., Z,), 2 == (21, . .., 2,) 
x = (Z,, ., T,,), A = diag (h,, . ., h,) 

(1.8) 

(1.9) 

(1.10) 

Here 2 and % are complex-conjugate analytic vector-valued functions of z and Z, i\ is the dia- 

gonal eigenvalue matrix; the notation in (1.10) signifies that a passage to variables z and 

Z by formulas (1.8) has been effected in the right hand sides. According to (1.8) and (l.lO), 

the expansions of Z, and z, into series in powers of z and Z have only pure imaginary coef- 

ficients. This fact is a corollary of the presence in the system of the linear automorphism 

R: t - -- t, z--t z, - z-2. which is preserved in the normal form /4/. Henceforth we assume that 
the normal form of system (1.9), (1.10) has been written in variables 1, and U; z,Z-•t U. U. 

2, The stability Problem, From the above it follows that finite-order instability 

can be detected only if internal resonance in the sense defined in /2/ is present in the syst- 

em. The solution of the stability problem has been given in /2/ for autonomous systems of 

differential equations with respect to the first nonlinear terms in the normal form in the 

case of internal resonance of odd order K. For the problem being examined these results can 

be stated as follows. In the polar coordinates 

II, = r/K CXp(iF$), U, = I/Ee\p(- 10,) (s = I,. ..,n) (2.1) 

the model system obtained from the normal form by dropping terms of order higher than /\' - 1 
can be written as 

where a,(~ 2 I,. .,m) are real constants, and is a certain special class of the systems con- 

sidered in /2/. 

Theorem 1, A necessary and sufficient stability condition for model system (2.2) is 
the existence of a pair of coefficients ai, aj f 0 such that sign a+aj=-I. If, however, the 

condition sign aiaj= 1 is fulfilled for any pair ai, aj, then the trivial 'solution of system 

(1.1) is Liapunov-unstable. 
The question of the stability of the model system when several odd-ordered resonances are 

present in a system of form (1.9), (1.10) was investigated in /6/. Let us investigate the 
stability when an even-ordered resonance is present in the system; among them we consider 
fourth-order resonances as being the most important for applications. As is well know /7/, 
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the stability problem with fourth-order resonance is rather complex and in the general case 

an algebraic stability criterion does not exist even for the model system (*); we have man- 

aged to obtain only certain sufficient conditions for asymptotic stability and instability. 
However, the question for the model system has been solved to completion for the class of 

mechanical systems (1.1) being examined; when degeneracy is absent the necessary stability 

conditions are sufficient as well. 
Without loss of generality we write this resonance as 

&&= 0, Pt>O, ,&,=& I,! </I, I?? .< n 
(2.3) 

According to /4/ and to Sect.1, the model system resulting from the normal form by deletion 

of terms of higher than third order is 

Here A,,, Asj, B, are real constants; the complex-conjugate group of equations has been omit- 

ted. We consider the nonsingular case when not even one of the coefficients B, vanishes. In 

the polar coordinates rs, OS (from formulas (2.l))system (2.4) is written as 
0, 

rn' = X9, sir1 orI rf’; “, r.(:* = 0 (2.5) 
kl 

((I = 1, , !!!; p = 1,) f 1, ( n) 

8’ = i A,rj + i p,Bi fi r~“‘-6,i;cos~ 
i=* 1, 71 b =I 

II/ ,// 

11, = 2 pa&,, fl= xpaea (j=i,...,n) 
cc=1 a-=1 

Direct substitution convinces us that system (2.5) has the following first integrals 

W, = B,r, - B,r, = h, (a= 2,...,m) 

Wfl=q=hp (p=m+l,...,n) 

(2.6) 

where h, (Y = 2, . . . n) and h are arbitrary constants. Consequently, if there is a change 

sign among the coefficients B,(a = 1,. : .,m), then from the first and second integrals 

(2.6) we can set up a sign-definite integral linear 
stability of model system (2.4). 

Suppose that all the B, are of the same sign. 

ction 
1/(r,, . , r,,. 0) = w $ 

of 

in 

in r,(s =- 1, . .( n), which proves the 

From the integrals (2.6) we form the fun- 
n 

Function V is obviously positive definite in rl, 
v=2 

.,r,, if W# 0 on the manifolds 

on (2.7) function W has the form 

and does not vanish if 

(2.71 

(2.8) 

Thus, if all B, are of one sign, then when (2.8) is fulfilled the function V is a Liapunov 

function for (2.51, satisfying the stability theorem in /8/. 

*I See : Shnol', E. E. and Khazin, L. G., Nonexistence of an algebraic asymptotic stability 

criterion under resonance 1:3. Preprint Inst. Prikl. Mat., No. 45, MOSCOW, 1977. 
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Now let the inequality sign in (2.8) be reversed and let all B, be of one sign. Then the 

model system has a particular solution of growing ray type 

ra = yar, rp = 0, r' = yP, e = eo; 7, Ya> 0 

(cc = 1, . . ., m; p = m + 1, . ., n) 

Indeed, substituting this solution into (2.5), we obtain 

consequently, in this case the model system is unstable. The stability question for the mod- 
el system has been completely solved. We note that the system of integrals (2.6) is suffic- 
ient for the reduction of the model system's integration problem to quadratures. 

Let us now show that the instability revealed in the model system is preserved in the 
complete system. Assuming that system (1.9) has been reduced to normal form up to third-ord- 
er terms, inclusive, we pass to polar coordinates by formulas (2.1). The result can always 

Now, instead of variables r, we introduce the following ones 

rk, rz = r, f* + ES.), . . ., rm = r, (1 _t CC,) 
corresponding to the equations 

'- -2rlzrc,signB,IB,lpjiZ ~~~j~p~12(1+5j)Pj'2sin~f rxza 
j-1 

&--&(I-+-%) 

and we consider the function 

(2.10) 

where the plus sign is selected when all B, are positive and the minus sign when all & are 
negative. Computing the derivative of B relative to Eqs. (2.9) and (2.10), in the domain 
5’) 0 we obtain 

V'=&-2 ~~~~~pj~z~~;zsi*~~~ 5 
j=l 

_i-a~r~~zL'"B- 

i #l-Y) 

p=m+1 
-YgP]+ 

m 2;: IBjIpj" 

in 

sin20+4fijBjIPj!'+ 5 d,IB,jc~sO]Q& 
j-1 a=1 

m . . 
20r,* 2 1 Bll~~l”crk,lo~ 1 Rj Ipj’a sin8 + O(rt) 
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the derivative I"> 0 in domain 1' > 0. By the same token, all the hypotheses of Chetaev's 

instability theorem /9/ have been fulfilled. 

Theorem 2, If H,=,&(J (% 1.. . ..na). then a necessary and sufficient stability condi- 

tion for model system (2.4) is the fulfilment of one of the conditions: a) a pair of co- 

efficients ll;.Hj(i#i) exists such that sign Ii,Ilj -f ; b) .siyll /1,/i,, i and condition (2.8) 

is valid for all possible pairs of coefficients Ii,. II,. However, if all I:, (% 1, [I!) 

are of the same sign and (2.11) is fullilled, then the equilibrium position of system (1.1) is 

Liapunov-unstable. 

We remark that all the conclusions in the paper are valid not only for systems (1.1) with 

position forces but also for any invertible systems in the sense of the well-known definition 

(see /5/, p. 35). This follows from /4,5/. For example, suppose that forces 

I,, es_ i fyij ii/J ‘I, ‘,j 
is I,...,/‘) 

i., -L 

where I,, are holomorphic functions of 0, act on system (1.1) in addition to the position for- 

ces. Then all the transformations in Sect. 1 remain in force and as a result we arrive at 

(1.9) and (1.10). Forces of the kind mentioned occur, for example, in nonholonomic Chaplygin 

systems /lo/. 

3, Example, Model of an elastic rod under the action of a tracking 
force /l/, One group of stability problems with nonconservative position forcesisconnect- 

ed with elastic systems acted on by so-called tracking forces, i.e., forces whose action lines 

coincide with the tangents to the elastic axis of the rod. We can analyze one mechanical 

system as a model of these systems (see /l/). Retaining the notation in /l/, we pose the 

problem on the stability of the equilibrium position '1, = rps == 0, solved in the linear approxi- 

mation. We write the equations of perturbed motion, solved with respect to the highest deri- 

vatives, in the form: ,_ 
‘p, +,(i I ilr2’i2 iPI (h I,?) 

b,, :- - I((., + cp /.‘l,j ozz -)- r,n,J I A, b,, = I(ca - /‘l,)u,2 -1~ c+,J I A 
b2, I(<, ICY Fl,) CI?, + c,q,l : A, /I,: I(cz - II,) a,, -im cza,,l ; A 

-\~I), (111 (“dl2’ -. f’1>‘1 I’J (VI’ - $2’1 CT, C/2) ; (cyu*p- q!!) x 

tq, -- ‘F,? - 112 (b,,y , h2Yd (‘Fl - ‘12):: 

J(I), mT Cl,* (u,,(I1,’ -- 11,21/ 2’) !q ,’ - q 2’) (Q (r?) - 6 fh%z (,& _ q*)S ; 

y [(c, -, Cl ~ I’/, 3o,,b,,) ‘1, - (cz J 4 I- ~44 rpzl CR- ad’ 

A 7 allay2 ~~~ a$ 

The terms not written out are of order higher than third in vs and 'ps'(s= 4,2). In order that 

the characteristic equation 
x4 -(~ ax2 -j I, -= 0, a = - (b,, -1. b,,), b = b,,b,, - b,,b,l 

have pure imaginary roots, it is necessary and sufficient to fulfil the conditions 

II . 0, b ; 0. d - 4h > 0 
(3.1) 

From these inequalities we can find the least value of tracking force Y, under which the stab- 

ility of the system in the linear approximation is preserved. (The system is stable in the 
absence of the tracking force /l/): 

Let us find the system's frequencies 

IQ : ; + j/G! b, w12 -= 4 ~ 1/c ~ I,, q* > co22 

In accord with Sect. 1, if the relations e,?= p%~~'are not fulfilled for any integers !'>I, 
then the system is completely Birkhoff-stable. Let us reduce the linear-approximation system 
to form (1.6). The matrix ! p.,; has the form 

,J, -- i(h?? 
whence 
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As a result of the transformations indicated the system acquires the form 

zl' = ie,al - %I! iQ* (z, G) ~/- icDL* (2, ;) 1 . . . (3.3) 

where #I),* and I&* are the functions (11, and (1% are substitutions (3.2). 

Suppose that the resonance o,-~ 3cu, obtains in the system; for it to be present it is suf- 

ficient that the condition 

Oo? = 1006 > 0 (3.4) 
be fulfilled. Then, after normalization system (3-3) becomes 

ul' = ielu, + iu, (A,, 1 u1 1% + A,, 1 u2 i ') -{- IB~u~" $ . . (3.5) 
us' = ioq, -1 LZI~ (A,, 1 fil I? + As2 1 ti2 I’) + rH,u,u,Z + . . 

The real constants Ai, and Bi(f,j= 1, 2) are the coefficients in the right hand sides of (3.3) 

of the same products of variables as in (3.5) if in (3.3) 2 and : are replaced by u and L'. 

Without writing out their unwieldy expressions, we draw the following conclusions of the basis 

of Theorem 2. 

If the following inequalities 

R,R* <O, 4 I w, IP.I(A,, - 3&,) R, - (A,, - 3&) B, I l'-_ (3.6) 
are fulfilled together with condition (3.4), the equilibrium position 'p,=(pI= 0 is unstable. 

If, however, the second inequality in (3.6) reverses of if BIBp>O, then stability is guarante- 
ed for the system truncated up to cubic terms. 

The author thanks A. L. Kunitsyn for discussing the paper as well as the reviewer for 

valuable remarks. 
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